

ENVIRONMENTAL PRODUCT DECLARATION

in accordance with ISO 14025, ISO 21930 and EN 15804

Owner of the declaration:

Program operator:

Publisher:

Declaration number: Registration number:

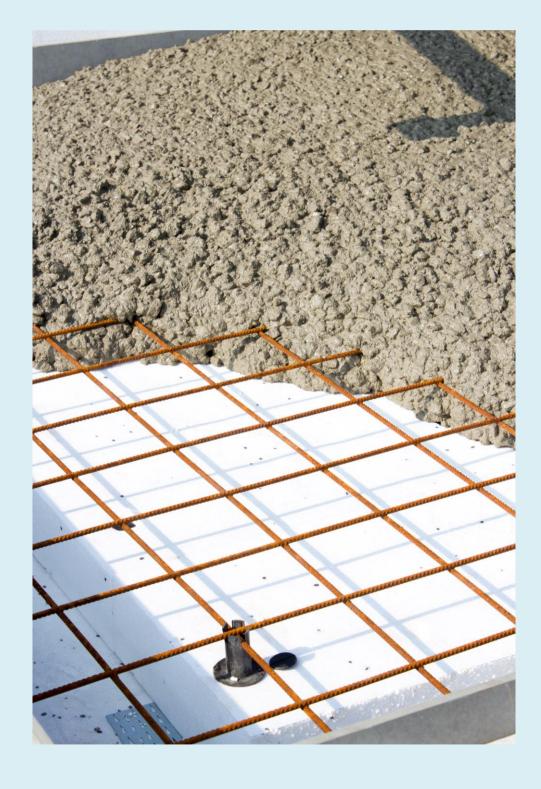
ECO Platform reference number:

Issue date: Valid to: Finja AB

The Norwegian EPD Foundation
The Norwegian EPD Foundation
NEDD 2000 1507 EN

NEPD-2900-1597-EN NEPD-2900-1597-EN

-


01.07.2021 01.07.2026

Grovbetong ECO

Finja Betong AB

www.epd-norge.no

General information Product: Owner of the declaration: **Grovbetong ECO** Finia Betong AB Contact person: Martin Varma Phone: +46 10-4552000 e-mail: martin.varma@finja.se **Program operator:** Manufacturer: The Norwegian EPD Foundation Finja Betong AB Post Box 5250 Majorstuen, 0303 Oslo Betongvägen 1, 28193 Finja Phone: Phone: +47 997 22 020 +46 10-4552000 e-mail: post@epd-norge.no e-mail: info@finja.se **Declaration number:** Place of production: Strängnäs, Sweden NEPD-2900-1597-EN **ECO Platform reference number:** Management system: ISO 14001 This declaration is based on Product Category Rules: Organisation no: CEN Standard EN 15804 serves as core PCR 556101-6840 Statement of liability: Issue date: 01.07.2021 The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. Valid to: 01.07.2026 **Declared unit:** Year of study: 1 kg Grovbetong ECO, Dry Mortar mix, in sack 2021 Comparability: **Declared unit with option:** A1-A5 EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context. **Functional unit:** The EPD has been worked out by: Malin Eriksson Approved: Verification: Independent verification of the declaration and data, according to ISO14025:2010 internal external

The CEN Norm EN 15804 serves as the core PCR.

Third party verifier:

Martin Erlandsson, IVL Swedish Environmental Research Inst.

(Independent verifier approved by EPD Norway)

sign

Håkon Hauan Managing Director of EPD-Norway

Product

Product description:

Carbon dioxide-reduced and binder-optimized concrete free from non renewable natural sand resource. Package consists of polyethylene made from recycled polyethylene and polyethylene made from renewable raw material originating from sugar cane.

Technical data:

Betongklass C28/35 Exposure class XC2/XF1

For information see www.finja.se

Market:

Nordic countries

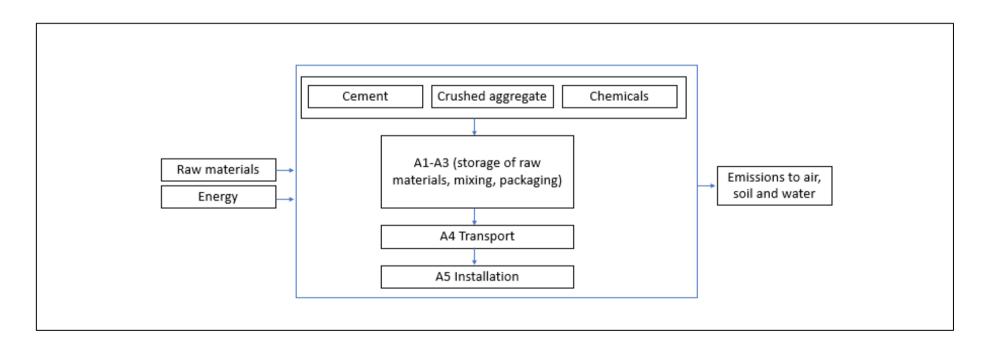
Reference service life

100 years

Product specification:

Composition of the product is described in the table below

Materials	kg	%
Cement		16
Crushed aggregate		84
Packaging		<1


LCA: Calculation rules

Declared unit:

1 kg Grovbetong ECO, Dry Mortar mix, in sack

System boundary:

All processes from raw material extraction to product from the factory gate are included in the analysis (A1-A3). In addition, a median value for transport to the user (A4). Module A5 are calculated on the assumptions that 5% waste of the product occur in the assembly state, and that water and electricity used at the assembly are assumed to be zero.

Data quality:

Materials	Data quality	Source	Year
Cement	EPD	EPD-HCG-20190142-CAA1-EN	2019
Crushed aggregate	Industry data	Ecoinvent v3.6	
Packaging	Industry data	Ecoinvent v3.6	

Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy, water and waste production in-house is allocated equally among all products through mass allocation, except heat from pellets to dry crushed aggregate is allocated to the crushed aggregate percentage in the product. Effects of primary production of recycled materials allocated to the main product in which the material was used.

Cut-off criteria:

All major raw materials and all the essential energy is included. The production process for raw materials and energy flows that are included in very small amounts (<1%) are not included (except packaging). This cut-off rule does not apply for hazardous materials and substances.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

50 % of the products are delivered to the customer from the factory in Strängnäs (125 km). The remaining half of the products are first transported to Finja Betongs warehouse in Hässleholm before it is transported to the customer (total distance 689 km). The distance to customer is a median value in terms of deliveries made in 2020.

Transport from production place to user (A4)

Туре	Capacity utilisation (incl. return) %	Type of vehicle	Distance km	Fuel/Energy	Value
Truck	80%	Lorry, Euro 5	407	l/tkm	

It is estimated that 5 % waste of the product occur in the assembly state.

Assembly (A5)

7.000111013 (7.00)	
	Parameter expressed by functional unit
Auxiliary	Not applicable
Water consumption	Use of water is not included in the assembly calculations as it is assumed to have a small environmental impact.
Electricity consumption	Use of electricity is not included in the assembly calculations as it is assumed to have a very small environmental impact.
Other energy carriers	Not applicable
Material loss	Material loss is assumed to be 5 %
Output materials from waste treatment	Waste management process for packaging
Dust in the air	Not applicable

LCA: Results

Syst	System boundaries (X=included, MND= module not declared, MNR=module not relevant)															
Pro	duct sta	age	Assem	nbly stage		Use stage End of life stage					Beyond the system boundaries					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Х	Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

4/6

Environme	Environmental impact									
Parameter	Unit	A1	A2	A3	A1- A3	A4	A5			
GWP	kg CO ₂ -eqv	1.26E-01	5.41E-03	1.73E-03	0.133	2.80E-02	8.06E-03			
ODP	kg CFC11-eqv	3.45E-09	1.64E-11	1.93E-10	3.66E-09	5.71E-09	1.86E-10			
POCP	kg C ₂ H ₄ -eqv	1.69E-05	1.26E-06	6.75E-07	1.88E-05	5.31E-06	1.21E-06			
AP	kg SO ₂ -eqv	1.76E-04	2.46E-05	1.55E-05	2.16E-04	1.06E-04	1.61E-05			
EP	kg PO ₄ 3eqv	7.06E-05	5.68E-06	4.98E-06	8.13E-05	2.39E-05	5.26E-06			
ADPM	kg Sb-eqv	9.41E-07	5.76E-10	7.84E-08	1.02E-06	1.12E-09	5.11E-08			
ADPE	MJ	4.17E-01	7.62E-02	2.45E-02	5.18E-01	3.96E-01	4.57E-02		_	

GWP Global warming potential; ODP Depletion potential of the stratospheric ozone layer; POCP Formation potential of tropospheric photochemical oxidants; AP Acidification potential of land and water; EP Eutrophication potential; ADPM Abiotic depletion potential for non fossil resources; ADPE Abiotic depletion potential for fossil resources

Resource	use							
Parameter	Unit	A 1	A2	A3	A1-A3	A4	A5	
RPEE	MJ	1.61E-01	1.43E-04	9.64E-02	0.258	4.51E-04	1.29E-02	
RPEM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
TPE	MJ	1.61E-01	1.43E-04	9.64E-02	2.58E-01	4.51E-04	1.29E-02	
NRPE	MJ	6.38E-01	8.14E-02	3.03E-02	7.50E-01	4.23E-01	5.87E-02	
NRPM	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
TRPE	MJ	6.38E-01	8.14E-02	3.03E-02	7.50E-01	4.23E-01	5.87E-02	
SM	kg	2.11E-02	0.00E+00	0.00E+00	2.11E-02	0.00E+00	9.92E-04	
RSF	MJ	1.42E-01	0.00E+00	0.00E+00	1.42E-01	0.00E+00	7.08E-03	
NRSF	MJ	1.71E-01	0.00E+00	0.00E+00	1.71E-01	0.00E+00	8.56E-03	
W	m^3	1.20E-02	2.65E-05	1.56E-01	1.68E-01	1.89E-03	8.52E-03	

RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water

End of life	End of life - Waste									
Parameter	Unit	A1	A2	A3	A1- A3	A4	A5			
HW	kg	4.06E-07	1.28E-09	5.08E-08	4.58E-07	0.00E+00	2.29E-08			
NHW	kg	7.33E-02	9.00E-06	4.55E-04	7.38E-02	3.50E-08	3.69E-03			
RW	kg	2.00E-06	4.05E-09	1.44E-07	2.15E-06	0.00E+00	1.07E-07			

HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed

End of life	- Output flow							
Parameter	Unit	A1	A2	A3	A1- A3	A4	A5	
CR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
MR	kg	2.70E-03	0.00E+00	0.00E+00	2.70E-03	0.00E+00	1.35E-04	
MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
EEE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
ETE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy

Reading example: $9.0 \text{ E-}03 = 9.0 \cdot 10^{-3} = 0.009$

N Grovbetong ECO

Additional Norwegian requirements

Greenhous gas emission from the use of electricity in the manufacturing phase

Electricity use in production is based on consumption figures for 2020. Emission data is taken from Ecoinvent 3.3 "Electricity, medium voltage {SE}| market for | APOS, S"

Data source	Amount	Unit
Ecoinvent v3 (2016)	56	g CO ₂ -eqv/kWh

Dangerous substances

- ☑ The product contains no substances given by the REACH Candidate list or the Norwegian priority list
 The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1
 □ % by weight.
- The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List or the Norwegian Priority list, see table.
- ☐ The product contains no substances given by the REACH Candidate list or the Norwegian priority list. The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table.

Indoor environment

The product meets the requirements for low emissions (M1) according to EN15251: 2007 Appendix E.

Carbon footprint

Carbon footprint has not been worked out for the product.

Bibliography	
ISO 14025:2010	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012+A1:2013	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
PCR EPD-Norge	EPD-Norge, Product Category Rules Part A: Construction products and services. Valid to 07.04.2022
PCR EPD-Norge	EPD-Norge, Product Category Rules Part B for Concrete and concrete elements. Valid to 18.10.2023
LCA Report	LCA Report Finja Grovbetong ECO - 210602. Malin Eriksson, WSP

epd-norge.no The Norwegian EPD Foundation	Publisher and program operator The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo Norway	Phone: e-mail: web	+47 23 08 80 00 post@epd-norge.no www.epd-norge.no
<u>FINJA</u>	Owner of the declaration Finja Betong AB Betongvägen 1 S-281 93 Finja	Phone: e-mail: web	+46 10-455 20 00 info@finja.se www.finja.se
115])	Author of the Life Cycle Assessment Malin Eriksson Box 13033 S-402 51 Göteborg	Phone: e-mail: web	+46 10-722 50 00 malin.e.eriksson@wsp.com www.wsp.se

6/6